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di gravità di tutto il corpo) al
pronti, dal tempo sui blocchi e
dalla velocità di uscita dai bloc-
chi seguita dall’accelerazione
dai blocchi. Il rapporto ottimale
tra la partenza e l’accelerazione
dai blocchi è un problema mo-
torio specifico in cui l’atleta
deve integrare – in termini di
spazio e tempo – un movimen-
to aciclico con un movimento
ciclico. 

L’accelerazione dai blocchi è
quella fase dello sprint in cui i
parametri cinematici dell’ap-
poggio cambiano nella maniera
più dinamica. In seguito a que-
sti cambiamenti l’accelerazione
dai blocchi del TBCG dell’atle-
ta aumenta. L’accelerazione dai
blocchi è un complesso movi-
mento ciclico definito in manie-
ra predominante dalla progres-
sione della frequenza e della lun-
ghezza dei passi, dalla durata del-
le fasi di contatto e di volo e dal-
la posizione del baricentro di tut-
to il corpo al momento del con-
tatto col terreno. Tutti i parame-
tri citati sono interdipendenti e
ognuno dipende dai processi di
regolazione centrale del movi-
mento, dalle abilità motorie, dai
processi energetici e dalle carat-
teristiche morfologiche dell’a-
tleta (Cavagna, Komarek, &
Mazzoleni, 1971; Mann & Spra-
gue, 1980; Mero & Komi, 1990;
Coppenolle et al., 1990; Mero,
Komi, & Gregor 1992; Locatel-
li & Arsac, 1995). 

Luhtanen e Komi (1980) han-
no distinto nella fase di contat-
to dell’appoggio di velocità du-
rante l’accelerazione dei blocchi
una fase frenante e una fase pro-
pulsiva. La somma di entrambe
le parti costituisce il totale del

Introduzione

La partenza della velocità e
l’accelerazione dai blocchi sono
due fasi estremamente impor-
tanti, che determinano in maniera
diretta i risultati nelle gare di cor-
sa veloce dei 100m, 200m e
400m. Non è una coincidenza
che molti autori abbiano fatto
delle ricerche sui fattori bio-
meccanici di queste due fasi per
spiegare il fenomeno della velo-
cità dello sprint (Mero, Luhta-
nen, & Komi, 1983; Coppenol-
le & Delecluse, 1989; Guissard,
Duchateau, & Hainaut, 1992;
Korchemny, 1992; Schot &
Knutzen, 1992; Mc Clements,
Sanders, & Gander 1996, Har-
land & Steele, 1997). I risultati
degli studi e la loro applicabilità
dipende dalla rilevanza del cam-
pione di soggetti, dalla tecnolo-
gia della ricerca utilizzata e dal-
la valutazione critica dei risul-

tati. Lo sviluppo di moderne tec-
nologie biomeccaniche accresce
la precisione della misurazione
e dell’analisi dei fattori chiave
di prestazione nella gare di ve-
locità. La partenza della gara di
velocità e l’accelerazione dai
blocchi sono i primi due elementi
dello sprint, in cui l’atleta tenta
di assumere la velocità massima
dai blocchi. Lo studio (Tellez &
Doolittle, 1984) ha mostrato che
le due fasi determinano il risul-
tato totale per il 64% nella gare
dei 100 metri.

Altri studi (Mero, 1988; Coo-
penolle, 1989; Coppenolle et al.,
1990; Schot & Knutzen 1992;
Korchemny, 1992; Guissard, Du-
chateau, & Hainaut, 1992; Har-
land & Steele, 1997) concorro-
no a confermare che l’efficacia
della partenza nella gara di ve-
locità dipende primariamente dal
posizionamento dei blocchi, dal-
la posizione del TBCG (centro
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tempo di contatto. A causa del-
le condizioni biomeccaniche in
continuo cambiamento, anche
l’indice fase di contatto/fase di
volo cambia. I tempi totali di con-
tatto al suolo diminuiscono e la
fase di volo aumenta. La lun-
ghezza dell’appoggio dipende
dall’altezza corporea e/o dalla
lunghezza della gamba e dalla
forza sviluppata dai muscoli
estensori dell’anca (m. gluteus
maximus), ginocchio (m. vastus
lateralis, m. rectus femoris) e
l’articolazione della caviglia (m.
gastrocnemius) nella fase di con-
tatto. L’esecuzione della fase di
contatto è uno dei più importanti
generatori di efficienza nella ga-
re di velocità (Mero & Komi,
1990). La fase di contatto deve
essere la più breve possibile con
un rapporto ottimale tra la fase

frenante e la fase propulsiva. La
frequenza degli appoggi dipen-
de dal funzionamento del siste-
ma nervoso centrale ed è larga-
mente predeterminata dal punto
di vista genetico (Mero, Komi,
& Gregor, 1992). Quanto più è
alta la frequenza, tanto più è ri-
dotta l’ampiezza del passo, e vi-
ceversa. L’efficienza dell’accele-
razione dai blocchi è di fatto de-
terminata da un rapporto ottimale
tra la lunghezza e la frequenza
degli appoggi dell’atleta. 

L’obiettivo del nostro studio
è stato quello di identificare e
analizzare i parametri cinemati-
ci più rilevanti che contribui-
scono in maniera positiva al-
l’efficacia della partenza e del-
l’accelerazione dai blocchi in un
atleta, cioè di uno sprinter di li-
vello mondiale. Per analizzare

questo aspetto è stata utilizzata
la tecnologia biomeccanica più
all’avanguardia attualmente di-
sponibile. L’oggetto dello studio
ha riguardato la posizione sul
pronti dal punto di vista dell’al-
tezza del centro di gravità del
corpo totale (TBCG), il tempo
di reazione sui blocchi anterio-
re e posteriore, il tempo di rea-
zione sui blocchi, l’angolo fron-
tale sui blocchi, la velocità del
TBCG nei primi tre metri e i pa-
rametri cinematici dell’accelera-
zione dai blocchi nei primi die-
ci appoggi. È stato effettuato un
test con partenza da terra su 20m
per valutare l’efficacia dell’ac-
celerazione dai blocchi. I para-
metri cinematici della partenza
sono stati analizzati per mezzo
di una telecamera digitale ad al-
ta velocità con una frequenza di
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200 fotogrammi/sec. Le misura-
zioni dei parametri dell’accele-
razione dai blocchi sono state fat-
te per mezzo della tecnologia Op-
to Track e del sistema a foto-
cellule ad infrarossi. Ciò ha per-
messo di quantificare i parame-
tri biomeccanici chiave del mo-
vimento nella partenza e nel-
l’accelerazione dai blocchi, di
identificare gli errori potenziali
basandosi su questi dati e di cer-
care soluzioni ottimali. Lo stu-
dio ha riguardato le misurazioni
effettuate su uno sprinter, che at-
tualmente si trova ai vertici del-
le liste mondiali. A causa della
sofisticate procedure di metodo-
logia e tecnologia di misurazio-
ne, ci sono relativamente pochi
studi biomeccanici di questo ti-
po nella letteratura professiona-
le. I risultati di questo studio non
possono essere  generalizzati; tut-
tavia, i risultati hanno un valo-
re autorevole da un punto di vi-
sta cognitivo per l’oggettivazio-
ne delle due fasi chiave della cor-
sa di velocità.

Metodi

SOGGETTI

Lo studio ha riguardato Ma-
tic Osovnikar, un membro della
squadra nazionale della Repub-
blica di Slovenia nei 100 m (età
27, peso 76.7 kg, record perso-
nale nei 100m: 10.14 sec.). Le
misurazioni biomeccaniche sono
state effettuate nel maggio 2006,
periodo durante il quale l’atleta
si stava preparando per i Cam-
pionato Europei di Atletica di
Göteborg 2006. In questa com-
petizione Matic Osovnikar ha

vinto la medaglia di bronzo nei
100 metri stabilendo il record na-
zionale sloveno con 10.14 s.

PROCEDURE DEL TEST

Le misurazioni del test di
partenza e accelerazione dai
blocchi sono state effettuate
nell’impianto sportivo di Atleti-
ca Leggera della città di Liu-
biana, in condizioni climatiche
costanti ed ottimali. L’analisi ci-
nematica bidimensionale della
partenza è stata svolta con una
telecamera MIKROTRON MO-
TION BLITZ CUBE ECO-1 e il
registratore DIGITAL MOTION
ANALYSIS, che riesce a cattu-
rare 6 secondi di movimenti ad
una frequenza di 1000 foto-
grammi/secondo con una risolu-
zione di 640 x 512 pixel. Que-

sto studio è stato effettuato usan-
do una frequenza di 200 foto-
grammi/sec  (figura 1). L’area è
stata calibrata con due cubi di
riferimento con 1 metro di lato.
L’elaborazione e l’analisi dei da-
ti ottenuti sono state effettuate
usando l’Ariel Performance
Analysis System (APAS) - (Il si-
stema di analisi di prestazione
Ariel), figura 2. È stato appli-
cato il metodo della digitalizza-
zione automatica, usando marker
passivi ad alto contrasto. È sta-
to utilizzato anche il modello an-
tropometrico a sette segmenti
(piede, tibia, coscia, tronco, brac-
cio, avambraccio e testa – come
da Dempster, Miller e Nelson:
Biomechanica dello Sport, Lea
& Febiger, Philadelphia, 1973). 

Per analizzare i parametri ci-
nematici dell’accelerazione dai

Figura 1 - Sistema di misurazione dei parametri cinematici della partenza di
velocità e dell’accelerazione dai blocchi.
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va tecnologia OPTO-TRACK-
Microgate. Il sistema di misura-
zione è basato su barrette inter-
connesse (100 cm x 4 cm x 3
cm) adattate con sensori ottici e
un programma di  computer per
la memorizzazione e l’elabora-
zione dei dati. Ogni barretta è

provvista di 32 sensori-fotocel-
lule, poste a 4 cm di distanza
l’una dall’altra, 0.2 cm sopra il
terreno. Le barrette interconnes-
se sono state distribuite per una
lunghezza di 20 metri (figura 1)
e per tutta l’ampiezza della pi-
sta di velocità (1.22 m). La ca-
tena di misurazione ha permes-

so di  misurare i seguenti para-
metri dello sprint: tempo di con-
tatto, tempo di volo, lunghezza
dell’appoggio, frequenza del-
l’appoggio, velocità ad ogni ap-
poggio e cambi di velocità. In
aggiunta al sistema di misura-
zione OPTO-TRACK, è stato
usato anche il sistema a fotocel-
lule infrarosse (BROWER) nel
test di accelerazione dai blocchi
con partenza bassa per misurare
il tempo sulla distanza. Il sog-
getto ha effettuato il test di  20m
con partenza da terra cinque vol-
te, con pause di 12 minuti. Per
l’elaborazione statistica dei dati
è stato usato il pacchetto softwa-
re SPSS. 

Risultati e discussione

Le cifre evidenziate nella ta-
bella 1 suggeriscono che l’al-
tezza del TBCG nella posizione
del pronti era di 54 ± 0.01 cm.
La distanza orizzontale della
proiezione del TBCG dalla linea
di partenza era di 32 cm. Schot
e Knutzen (1992) hanno defini-
to questa posizione di pronti co-
me un tipo di partenza media,
che offre agli atleti d’élite con-
dizioni ottimali per generare la
velocità dai blocchi. Quanto più
è grande l’impulso di forza sul
blocco anteriore, tanto più bre-
ve è il tempo di reazione moto-
ria e più efficiente l’esecuzione
del primo appoggio e, di conse-
guenza, anche l’accelerazione
dai blocchi. In una tale posizio-
ne la massa è distribuita in ma-
niera uniforme tra gambe e brac-
cia. La posizione del pronti del-
lo sprinter sui blocchi è forte-
mente individuale e dipende pri-

Figura 2 - Posizione della telecamera ad alta velocità e dei due cubi di riferi-
mento.
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Tabella 1 - Parametri cinematici della posizione del pronti, della partenza dello sprint e dell’accelerazione dai blocchi
nei primi due appoggi.

VARIABILE Unità 1 2 3 4 5 AS    DS

POSIZIONE PRONTI

Distanza tra il TBCG e la linea di partenza cm 32 33 33 32 32 32 ± 0.00

Altezza del TBCG cm 54 53 54 54 54 54 ± 0.01

PARTENZA DELLO SPRINT

Tempo di reazione – piede destro s 0.275 0.285 0.295 0.285 0.305 0.29 ± 0.01

Tempo di reazione – piede sinistro s 0.405 0.420 0.440 0.410 0.440 0.43 ± 0.02

Angolo frontale del blocco o 41.0 39.4 41.1 42.3 39.3 40.8 ± 1.19

Velocità verticale dal blocco m.s–1 0.85 0.78 0.74 0.91 0.83 0.77 ± 0.14

Velocità orizzontale dal blocco m.s–1 4.27 4.08 3.95 4.28 4.19 4.11 ± 0.17

Velocità dal blocco – risultante m.s–1 4.36 4.15 4.02 4.37 4.28 4.18 ± 0.19

ACCELERAZIONE – PRIMO APPOGGIO
(FASE FRENANTE)

Velocità verticale m.s–1 –0.89 –0.89 –0.86 –0.96 –0.92 –0.89 ± 0.04

Velocità orizzontale m.s–1 1.99 2.02 2.10 1.82 1.91 2.00 ± 0.12

Velocità – risultante m.s–1 2.18 2.21 2.27 2.05 2.12 2.19 ± 0.09

ACCELERAZIONE – PRIMO APPOGGIO
(FASE PROPULSIVA)

Velocità verticale m.s–1 1.12 0.91 0.97 1.23 0.93 0.99 ± 0.16

Velocità orizzontale m.s–1 4.48 4.39 4.45 4.22 4.59 4.41 ± 0.13

Velocità – risultante m.s–1 4.62 4.48 4.56 4.40 4.68 4.52 ± 0.12

ACCELERAZIONE – SECONDO APPOGGIO 
(FASE FRENANTE)

Velocità verticale m.s–1 0.31 0.35 0.36 0.36 0.32 0.33 ± 0.04

Velocità orizzontale m.s–1 6.00 6.07 6.14 5.96 5.95 5.98 ± 0.12

Velocità – risultante m.s–1 6.20 6.08 6.15 5.97 5.96 6.03 ± 0.15

ACCELERAZIONE – SECONDO APPOGGIO 
(FASE PROPULSIVA)

Velocità verticale m.s–1 0.05 0.10 0.43 0.41 0.53 0.24 ± 0.25

Velocità orizzontale m.s–1 5.75 5.91 6.15 6.06 6.21 6.00 ± 0.17

Velocità – risultante m.s–1 5.75 5.91 6.17 6.07 6.24 6.05 ± 0.18
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mariamente dalle caratteristiche
antropometriche e dalle abilità
motorie dell’atleta. L’altezza del
TBCG del soggetto rappresenta
il 32% dell’altezza in piedi. 

Il tempo dallo sparo della
pistola al momento in cui il pie-
de lascia il blocco posteriore
(cioè il tempo totale di reazio-
ne) è 0.29 ± 0.01 sec. Il tempo
totale di reazione della gamba
anteriore è 43 ± 0.02 sec. Que-
sti valori riguardanti i tempi di
reazione evidenziano un certo de-
ficit dell’atleta in questo speci-
fico aspetto. Mero e Komi (1990)
hanno registrato fra gli sprinter
tempi di reazione più brevi, cioè
0.09 sec. Il tempo totale di rea-
zione è il risultato di un’abilità
a due componenti, definite il
‘tempo premotorio’ (cioè il tem-
po che intercorre dallo sparo del-
la pistola all’inizio dell’attiva-
zione elettromiografica del  mu-
scolo) e il ‘tempo motorio’ (cioè
il tempo dall’inizio dell’attiva-
zione elettromiografica del mu-
scolo al momento in cui il pie-
de lascia il blocco posteriore-an-
teriore). Nella finale dei 60m,
corsa ai Campionati Mondiali In-
door a Mosca, M.O. fece regi-
strare il quinto miglior tempo di
reazione –155 ms. Il tempo di
reazione è stato studiato da mol-
ti ricercatori (Coppenolle et al.,
1990; Mero & Komi, 1990; De-
lecluse et al., 1992; Martin &
Buonchristiani, 1995; McCle-
ments et al., 1996; Ferro et al.,
2001). Nella maggior parte di
questi studi non si è potuta sta-
bilire alcuna correlazione tra il
tempo di reazione e il tempo fi-
nale nella corsa dei 100 metri.
Il tempo di reazione influisce so-
lo per il 2-3% sul risultato tota-

le in una corsa sui 100 metri
(Bruggemann & Glad, 1990).
Nella corsa sui 60m il tempo di
reazione è più importante. Il vin-
citore dei  60m a Mosca, L. Scott
(USA), ha fatto registrate il più
breve tempo di reazione in ter-
mini assoluti, cioè, 124 ms. Que-
sto comporta un’abilità specifi-
ca, determinata da un punto di
vista genetico, che permette la
trasmissione rapida degli impul-
si nervosi afferenti ed efferenti,
i quali, in qualche misura, di-
pendono dall’esperienza compe-
titiva e dall’anticipazione dello
sprinter.

La risultante della velocità
dello sprinter (M.O.) al momen-
to in cui il suo piede cessa il
contatto con il blocco anteriore,
che viene definita la velocità dal
blocco, è 4.18 ± 0.19 m.s–1 (fi-
gura 3). Una comparazione dei
risultati tratti da altri studi (Me-
ro, 1988; Coppenolle et al., 1989;
Mero & Komi, 1990), che riguar-

davano sprinter di alto livello,
rivela che la velocità dal blocco
del nostro soggetto è stata mag-
giore di 0.18 m.s–1. Questa capa-
cità eccezionale di generare
un’alta velocità, che segue l’usci-
ta dal blocco, è una conseguenza
della capacità di esercitare un al-
to impatto di forza in direzione
orizzontale, di una buona coor-
dinazione della base del suppor-
to (mani), dell’azione efficace
dell’arto inferiore posteriore e
dell’angolo frontale basso del
blocco, che è di soli 40.8 ± 1.19°.
Un basso angolo frontale garan-
tisce all’atleta un’alta velocità
orizzontale di partenza e un’a-
deguata velocità verticale dal
blocco utilizzata per bilanciare
gli effetti della gravità. Un in-
nalzamento verticale medio nel
TBCG nei primi tre metri del-
l’accelerazione dai blocchi arri-
va a 0.67 ± 0.01 m, suggerendo
che il tronco dell’atleta durante
la corsa è fortemente inclinato

Figura 3 - Velocità dai blocchi e angolo frontale dei blocchi (angolo di uscita).
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in avanti rispetto alla linea oriz-
zontale. Quindi la componente
orizzontale della velocità è mas-
simizzata. 

La qualità della transizione
dalla partenza all’accelerazione
dal blocco viene vista principal-
mente nei parametri della velo-
cità del TBCG dello sprinter nei
primi due appoggi (tabella 1, fi-
gura 4). Alla fine del primo ap-
poggio (fase propulsiva) la ve-
locità orizzontale del TBCG è
stata di 4.41 ± 0.13 m.s–1 e alla
fine del secondo appoggio di 6.00
± 0.17 m.s–1, mostrando un in-
cremento di  velocità di più di
1.5 m.s–1. Nei primi due appog-
gi la proiezione del TBCG è lo-
calizzata dietro il punto di con-
tatto del piede col terreno. È solo

dopo il terzo e quarto appoggio
che la proiezione si sposta da-
vanti al punto di contatto del pie-
di col terreno. Come conseguen-
za della posizione del TBCG nei
primi due appoggi si ha una ridu-
zione della velocità nella fase
frenante dell’appoggio di corsa.
Nel primo appoggio, che risulta
di 103.6 ± 1.34 cm, la velocità
nella fase frenante è di 2.00 ±
0.12 m.s–1. La velocità orizzon-
tale diminuisce del 45.3% rispet-
to alla velocità nella fase propul-
siva del primo appoggio. La lun-
ghezza del secondo appoggio è
quasi identica a quella del primo
appoggio (103.8 ± 3.42 m.s–1).
Tuttavia la riduzione della velo-
cità nella fase frenante è so-
stanzialmente minore (1.2%) ri-

spetto al primo appoggio. Il pun-
to critico è rappresentato dalla
fase di propulsione nel primo ap-
poggio, che segue l’uscita dal
blocco. Si può quindi stabilire
che il soggetto del nostro studio
esegue un primo appoggio ec-
cessivamente lungo, cosa che ri-
sulta dalla forza di reazione ne-
gativa sul terreno, che viene eser-
citata nella direzione opposta al
movimento. 

I risultati nella tabella 2 mo-
strano che il risultato medio del
soggetto in uno sprint di 20m con
partenza da terra è stato di 3.07
± 0.08 m.s–1. Il tempo di contat-
to medio nei primi 10 appoggi
dell’accelerazione dal blocco è
stata di 126.40 ± 1.52 ms e il
tempo di volo 94.20 ± 4.76 ms.

Figura 4 - Partenza dello sprint e accelerazione dai blocchi.
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Tabella 2 - Parametri cinematici dell’accelerazione dai blocchi ai 20 metri

VARIABILE Unità 1 2 3 4 5 AS      DS

20M SPRINT s 3.08 2.98 3.07 3.03 3.19 3.07 ± 0.08

Numero appoggi n 12 12 12 12 12 12.00 ± 0.00

Frequenza APPOGGI Hz 4.5 4.4 4.6 4.6 4.6 4.54 ± 0.09

Lunghezza appoggio cm 165 166 162 163 163 163.80 ± 1.64

Tempo di contatto al suolo ms 125 126 126 126 129 126.40 ± 1.52

Tempo di volo ms 96 100 93 95 87 94.20 ± 4.76

Indice di attività contatto/volo 1.30 1.26 1.35 1.32 1.48 1.34 ± 0.11

APPOGGIO UNO

Lunghezza cm 103 103 103 103 106 103.60 ± 1.34

Tempo di contatto al suolo ms 172 178 184 167 185 177.20 ± 7.73

Tempo di volo ms 62 37 56 55 43 50.60 ± 10.26

APPOGGIO DUE

Lunghezza cm 99 105 108 102 105 103.80 ± 3.42

Tempo di contatto al suolo ms 142 179 154 154 166 159.00 ± 9,04

Tempo di volo ms 86 80 80 92 74 82.40 ± 6.84

APPOGGIO TRE

Lunghezza cm 133 136 130 130 133 132.40 ± 2.51

Tempo di contatto al suolo ms 141 129 135 129 148 136.40 ± 8.17

Tempo di volo ms 80 92 86 80 73 82.20 ± 7.16

APPOGGIO QUATTRO

Lunghezza cm 136 140 143 136 133 137.60 ± 3.91

Tempo di contatto al suolo ms 130 130 130 136 130 131.20 ± 2.68

Tempo di volo ms 110 92 104 92 98 99.20 ± 7.82

APPOGGIO CINQUE

Lunghezza cm 158 155 158 158 158 157.40 ± 1.34

Tempo di contatto al suolo ms 111 129 123 123 117 120.60 ± 6.84

Tempo di volo ms 86 86 93 87 92 88.80 ± 3.42

APPOGGIO SEI

Lunghezza cm 155 164 164 161 158 160.40 ±3.94

Tempo di contatto al suolo ms 117 130 129 123 117 123.20 ± 6.26

Flight time ms 99 98 92 98 105 98.40 ± 4.62

APPOGGIO SETTE

Lunghezza cm 171 177 180 174 177 175.80 ± 3.42

Tempo di contatto al suolo ms 129 117 117 123 117 120.60 ± 5.37

Tempo di volo ms 86 111 111 93 105 101.20 ± 11.23

APPOGGIO OTTO

Lunghezza cm 177 192 186 183 183 184.20 ± 5.45

Tempo di contatto al suolo ms 117 111 105 117 110 112.00 ± 5.10

Tempo di volo ms 111 117 117 104 111 112.00 ± 0.09

APPOGGIO NOVE

Lunghezza cm 186 189 192 189 189 189.00 ± 2.12

Tempo di contatto al suolo ms 99 98 104 111 105 103.40 ± 5.22

Tempo di volo ms 92 111 111 105 105 104.80 ± 7.76

APPOGGIO DIECI

Lunghezza cm 186 196 199 196 196 194.60 ± 4.98

Tempo di contatto al suolo ms 117 105 111 110 110 110.60 ± 4.28

Tempo di volo ms 104 123 123 111 117 115.60 ± 8.17
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L’indice di attività (tempo di
contatto/tempo di volo) è stato
1.34 ± 0.11, la qual cosa sug-
gerisce che le fasi di contatto
duravano 25% di più in media
delle fasi di volo nei primi 10
appoggi dell’accelerazione dai
blocchi.

L’accelerazione dai blocchi è
uno dei segmenti più complessi
dello sviluppo della velocità nel-
lo sprint (Mero, Luhtanen, & Ko-
mi, 1993; Luhtanen & Komi,
1980; Donatti, 1995; Hunter et
al., 2004), caratterizzata dai cam-
biamenti più evidenti nella strut-
tura dinamica e cinematica del-
la tecnica di corsa. La lunghez-
za e la frequenza dell’appoggio
aumentano, le fasi di contatto si
abbreviano e le fasi di volo si
allungano. Nei primi dieci ap-
poggi la lunghezza del passo del-
l’atleta aumenta del 46.9%. Il
tempo di contatto al suolo del
primo appoggio era 177.2 ± 7.73
ms. Rispetto al tempo totale del-
l’appoggio (tempo di contatto +
tempo di volo) la fase di contat-
to ha una percentuale del 77.4%.
Valori simili sono stati indivi-
duati su un campione di sprin-
ter di alto livello (Mero, 1988;
Mero & Komi 1990; Harland &
Steele, 1997). Nel secondo ap-
poggio il tempo di contatto col
terreno rappresentava il 65.8%
del tempo totale di appoggio. A
causa delle condizioni biomec-
caniche, che si modificano e la
velocità che aumenta, l’indice fa-
se di  contatto/fase di volo è sog-
getto a cambiamenti. Le fasi di
contatto diventano più brevi e le
fasi di volo più lunghe. Il tem-
po della fase di contatto dell’a-
tleta è uguale al tempo della fa-
se di volo nell’ottavo appoggio.

Ciò rappresenta la fine della fa-
se di accelerazione dai blocchi
e l’inizio della seconda fase di
accelerazione, che rappresenta il
passaggio verso la velocità mas-
simale. La lunghezza dell’appog-
gio si stabilizza nel nono appog-
gio (189.0 ± 2.12 m) e per la
prima volta nella corsa il tempo
di contatto (CT = 103.40 ± 5.22
ms) è più corto del tempo della
fase di volo (FT = 104.80 ± 7.76
ms).

Tra i cinque sprint effettuati
il migliore risultato del sogget-
to è stato 2.98 sec. In questo
sprint ha effettuato 12 appoggi
ad una frequenza media di 4.4
Hz e con una lunghezza di 166
cm. Rispetto agli altri sprint, la
lunghezza media dell’appoggio
è stata quella più alta, con la fa-
se di volo più lunga e la fre-
quenza più bassa. L’indice di at-
tività è stato 1.26. Il tempo del-
la fase di contatto è già uguale
alla fase di volo nel settimo ap-
poggio. Dall’ottavo appoggio in
poi la lunghezza dell’appoggio
si è stabilizzata e i tempi della
fase di contatto sono stati più
brevi di quelli delle fasi di vo-
lo. La transizione dall’accelera-
zione dei blocchi alla velocità
massimale dell’atleta si è verifi-
cata passando dal settimo al-
l’ottavo appoggio. Nel suo ulti-
mo tentativo (3.19 sec.), questa
transizione si è verificata solo
tra il decimo e l’undicesimo ap-
poggio. 

Conclusione

La partenza dello sprint e l’ac-
celerazione dai blocchi sono in-
discutibilmente due importanti

fasi della corsa sui 100m, ed è
per questo che l’allenamento di
queste due componenti merita
speciale attenzione. Per ottimiz-
zare l’efficienza dell’allenamen-
to, la struttura di queste due fa-
si deve essere esaminata in det-
taglio. Entrambe le fasi sono for-
temente dipendenti da fattori ge-
netici, motori e biomeccanici. Lo
scopo di questo studio è di spie-
gare i parametri biomeccanici più
importanti, che danno origine ad
una prestazione efficace della
partenza e dell’accelerazione dai
blocchi. Finora, tali studi di so-
lito sono stati effettuati su cam-
pioni di sprinter di media quali-
tà, in alcuni casi anche con  scar-
sa accuratezza riguardo alle pro-
cedure di misurazione. Qui vie-
ne riportata un’analisi biomec-
canica di uno degli sprinter che
attualmente si trova al top mon-
diale. Questa analisi è stata con-
dotta utilizzando una tecnologia
che soddisfa i più alti standard
di ricerca biomeccanica. Lo stu-
dio ha messo in evidenza l’indi-
scutibile correlazione esistente
tra la partenza e l’accelerazione
dai blocchi. La base è una posi-
zione sul pronti ottimale, che ga-
rantisca la velocità massimale dai
blocchi dello sprinter. Il passag-
gio dalla velocità dal blocco al-
l’accelerazione dal blocco dipen-
de dall’esecuzione del primo ap-
poggio, in particolare dalla lun-
ghezza dell’appoggio e dal posi-
zionamento del piede nella fase
frenante. Dall’efficacia dell’ac-
celerazione dal blocco deriva
l’andamento dell’indice di fase
di contatto/fase di volo nei pri-
mi 10 appoggi. La lunghezza e
la frequenza dell’appoggio de-
vono essere coordinate in ma-
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niera tale da permettere l’esecu-
zione nel più breve tempo pos-
sibile di tempi di contatto al suo-
lo uguali a quelli delle fasi di
volo. Nei primi tre appoggi il
centro di gravità del corpo tota-

le deve innalzarsi gradualmente
in una direzione verticale, in ma-
niera tale da permettere l’otti-
mizzazione della componente
orizzontale della velocità dai
blocchi. I risultati dello studio

non possono essere generalizza-
ti, tuttavia, essi possono contri-
buire in maniera preziosa alla
spiegazione del fenomeno sprint
ai più alti livelli di prestazione
agonistica.


